Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biol Methods Protoc ; 8(1): bpad005, 2023.
Article in English | MEDLINE | ID: covidwho-2299409

ABSTRACT

In November 2021, the first infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) B.1.1.529 ('Omicron') was reported in Germany, alongside global reports of reduced vaccine efficacy (VE) against infections with this variant. The potential threat posed by its rapid spread in Germany was, at the time, difficult to predict. We developed a variant-dependent population-averaged susceptible-exposed-infected-recovered infectious-disease model that included information about variant-specific and waning VEs based on empirical data available at the time. Compared to other approaches, our method aimed for minimal structural and computational complexity and therefore enabled us to respond to changes in the situation in a more agile manner while still being able to analyze the potential influence of (non-)pharmaceutical interventions (NPIs) on the emerging crisis. Thus, the model allowed us to estimate potential courses of upcoming infection waves in Germany, focusing on the corresponding burden on intensive care units (ICUs), the efficacy of contact reduction strategies, and the success of the booster vaccine rollout campaign. We expected a large cumulative number of infections with the VOC Omicron in Germany with ICU occupancy likely remaining below capacity, nevertheless, even without additional NPIs. The projected figures were in line with the actual Omicron waves that were subsequently observed in Germany with respective peaks occurring in mid-February and mid-March. Most surprisingly, our model showed that early, strict, and short contact reductions could have led to a strong 'rebound' effect with high incidences after the end of the respective NPIs, despite a potentially successful booster campaign. The results presented here informed legislation in Germany. The methodology developed in this study might be used to estimate the impact of future waves of COVID-19 or other infectious diseases.

2.
Epidemiol Infect ; 151: e38, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2243021

ABSTRACT

After the winter of 2021/2022, the coronavirus disease 2019 (COVID-19) pandemic had reached a phase where a considerable number of people in Germany have been either infected with a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, vaccinated or both, the full extent of which was difficult to estimate, however, because infection counts suffer from under-reporting, and the overlap between the vaccinated and recovered subpopulations is unknown. Yet, reliable estimates regarding population-wide susceptibility were of considerable interest: Since both previous infection and vaccination reduce the risk of severe disease, a low share of immunologically naïve individuals lowers the probability of further severe outbreaks, given that emerging variants do not escape the acquired susceptibility reduction. Here, we estimate the share of immunologically naïve individuals by age group for each of the sixteen German federal states by integrating an infectious-disease model based on weekly incidences of SARS-CoV-2 infections in the national surveillance system and vaccine uptake, as well as assumptions regarding under-ascertainment. We estimate a median share of 5.6% of individuals in the German population have neither been in contact with vaccine nor any variant up to 31 May 2022 (quartile range [2.5%-8.5%]). For the adult population at higher risk of severe disease, this figure is reduced to 3.8% [1.6%-5.9%] for ages 18-59 and 2.1% [1.0%-3.4%] for ages 60 and above. However, estimates vary between German states mostly due to heterogeneous vaccine uptake. Excluding Omicron infections from the analysis, 16.3% [14.1%-17.9%] of the population in Germany, across all ages, are estimated to be immunologically naïve, highlighting the large impact the first two Omicron waves had until the beginning of summer in 2022. The method developed here might be useful for similar estimations in other countries or future outbreaks of other infectious diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Middle Aged , Infant , COVID-19/epidemiology , Germany/epidemiology , Disease Outbreaks , Pandemics , Antibodies, Viral
3.
Communications medicine ; 2(1), 2022.
Article in English | EuropePMC | ID: covidwho-2034156

ABSTRACT

Background While the majority of the German population was fully vaccinated at the time (about 65%), COVID-19 incidence started growing exponentially in October 2021 with about 41% of recorded new cases aged twelve or above being symptomatic breakthrough infections, presumably also contributing to the dynamics. So far, it remained elusive how significant this contribution was and whether targeted non-pharmaceutical interventions (NPIs) may have stopped the amplification of the crisis. Methods We develop and introduce a contribution matrix approach based on the next-generation matrix of a population-structured compartmental infectious disease model to derive contributions of respective inter- and intragroup infection pathways of unvaccinated and vaccinated subpopulations to the effective reproduction number and new infections, considering empirical data of vaccine efficacies against infection and transmission. Results Here we show that about 61%–76% of all new infections were caused by unvaccinated individuals and only 24%–39% were caused by the vaccinated. Furthermore, 32%–51% of new infections were likely caused by unvaccinated infecting other unvaccinated. Decreasing the transmissibility of the unvaccinated by, e. g. targeted NPIs, causes a steeper decrease in the effective reproduction number Conclusions A minority of the German population—the unvaccinated—is assumed to have caused the majority of new infections in the fall of 2021 in Germany. Our results highlight the importance of combined measures, such as vaccination campaigns and targeted contact reductions to achieve temporary epidemic control. Plain language summary With about 65% of its citizens vaccinated at the time, Germany experienced a large wave of COVID-19 in the fall of 2021, regionally overburdening the healthcare system. We are interested in how much this crisis was driven by infections in vaccinated versus unvaccinated people. We use a mathematical model to show that transmission of the disease during this period was largely driven by the unvaccinated population, despite representing a smaller proportion of the overall population. Our results suggest that higher vaccine uptake, reduced mixing between vaccinated and unvaccinated people, and targeted contact-reduction measures would have been effective measures to control spread at the time. These findings may have implications for how we manage future waves of COVID-19 or other diseases. Maier et al. develop a mathematical model to examine the contributions of vaccinated vs. unvaccinated populations to the wave of SARS-CoV-2 infections in Germany in autumn 2021. They report that the unvaccinated population were the main drivers of transmission and that targeted non-pharmaceutical interventions would likely have mitigated this.

4.
Proc Natl Acad Sci U S A ; 117(52): 32883-32890, 2020 12 29.
Article in English | MEDLINE | ID: covidwho-960372

ABSTRACT

In the wake of the COVID-19 pandemic many countries implemented containment measures to reduce disease transmission. Studies using digital data sources show that the mobility of individuals was effectively reduced in multiple countries. However, it remains unclear whether these reductions caused deeper structural changes in mobility networks and how such changes may affect dynamic processes on the network. Here we use movement data of mobile phone users to show that mobility in Germany has not only been reduced considerably: Lockdown measures caused substantial and long-lasting structural changes in the mobility network. We find that long-distance travel was reduced disproportionately strongly. The trimming of long-range network connectivity leads to a more local, clustered network and a moderation of the "small-world" effect. We demonstrate that these structural changes have a considerable effect on epidemic spreading processes by "flattening" the epidemic curve and delaying the spread to geographically distant regions.


Subject(s)
COVID-19/prevention & control , Pandemics , Quarantine , Spatial Analysis , Travel/statistics & numerical data , Cell Phone , Germany , Humans
5.
Science ; 368(6492): 742-746, 2020 05 15.
Article in English | MEDLINE | ID: covidwho-46625

ABSTRACT

The recent outbreak of coronavirus disease 2019 (COVID-19) in mainland China was characterized by a distinctive subexponential increase of confirmed cases during the early phase of the epidemic, contrasting with an initial exponential growth expected for an unconstrained outbreak. We show that this effect can be explained as a direct consequence of containment policies that effectively deplete the susceptible population. To this end, we introduce a parsimonious model that captures both quarantine of symptomatic infected individuals, as well as population-wide isolation practices in response to containment policies or behavioral changes, and show that the model captures the observed growth behavior accurately. The insights provided here may aid the careful implementation of containment strategies for ongoing secondary outbreaks of COVID-19 or similar future outbreaks of other emergent infectious diseases.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Basic Reproduction Number , Behavior , COVID-19 , China/epidemiology , Communicable Disease Control , Contact Tracing , Coronavirus Infections/transmission , Disease Susceptibility , Humans , Models, Statistical , Pneumonia, Viral/transmission , Quarantine , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL